

Effects of long-term grazing management on dandelion (Taraxacum officinale) in Agrostis capillaris grassland

Š. Supek*, V. Pavlů†, L. Pavlů†, J. Gaisler†, M. Hejcman*, V. Ludvíková* and J. Mikulka†

*Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic, †Grassland Research Station, Crop Research Institute, Prague, Czech Republic

Abstract

Dandelion (Taraxacum officinale agg.) is a common forb species in grasslands in Europe. Although sometimes regarded as a valuable forage herb, it may become a weed, especially in arable land. There is limited information on the response of Taraxacum to long-term grassland management practices. Therefore, we analysed cover and dry-matter standing biomass of Taraxacum in a long-term (1998-2012) grazing experiment on an Agrostis capillaris grassland. The following treatments were laid out on formerly abandoned grassland: (i) intensive grazing (IG); (ii) extensive grazing (EG); (iii) first cut followed by intensive grazing (ICG); (iv) first cut followed by extensive grazing (ECG); and (v) unmanaged grassland (U). During the first 10 years, all defoliation treatments (i–iv) supported the presence of Taraxacum, and the lowest proportion was recorded in the unmanaged treatment (U). During the final 7 years of the study, combined cutting and grazing promoted Taraxacum cover more than that of grazing only (ICG > IG > ECG > EG). Cover of Taraxacum was negatively affected by increasing sward height where Taraxacum plants had lower fitness. Due to the relatively strong relationship between percentage cover of Taraxacum and its dry-matter biomass, percentage cover could be used as a simple method for the assessment of biomass of Taraxacum in a sward. Results are discussed in the context of adapting the management of A. capillaris grassland as a simple method for control of Taraxacum abundance, particularly in situations of extensification or abandonment.

Correspondence to: V. Pavlů, Grassland Research Station, Department of Weeds and Vegetation of Agroecosystems, Crop Research Institute, Rolnická 6, CZ-460 11 Liberec, Czech Republic.

E-mail: pavlu@vurv.cz

Received 11 April 2016; revised 1 September 2016

Keywords: cutting, grazing, management control, standing biomass, Taraxacum, grassland weeds

Introduction

Dandelion [Taraxacum sp. (Asteraceae)], generally referred to by the collective name of Taraxacum officinale agg. (Kirschner and Štěpánek, 2011), is a perennial herb native to Europe. It occupies a wide range of habitats, especially pastures, lawns and meadows (Grime et al., 1988) where it frequently has the status of a weed species. It can become aggressive and invasive due to its high plasticity and ecotypes with different ecophysiological traits, which allow it to occupy a wide range of environmental conditions (Molina-Montenegro et al., 2013). Its weed status is also partly the result of its high seed production, dispersal and germination potential (Abu-Dieyeh and Watson, 2007).

Although dandelion is frequently considered to be a weed, especially in arable land, its weed status in grassland is less straightforward. Its herbage has a low dry-matter content which can cause problems with forage conservation, especially losses during mechanical hay making (Isselstein and Ridder, 1993; Stewart-Wade et al., 2002). On the other hand, its presence in grassland has potential to contribute to the overall forage value of the sward (Stewart-Wade et al., 2002; Assaf and Isselstein, 2009). For example, it is reported to have a high content (150-220 g kg⁻¹ DM) of crude protein (Khan et al., 2013), high digestibility with over 700 g kg⁻¹ of digestible organic matter (Hoveland et al., 1986; Marten et al., 1987), and it also has high concentrations of some minerals, especially K and Mg (Harrington et al., 2006; Grzegorczyk et al., 2013). Therefore, dandelion can also be considered as a valuable forage species in some situations and significantly increase the quality of pasture biomass (Pavlů et al., 2006).

In established grassland swards, dandelion seedling establishment is suppressed by the effect of reduced light conditions at the base of the sward, and by the more vigorous growth of grasses especially in response to increased N and K supply from fertilizer applications (Tilman et al., 1999; Klimeš et al., 2003; Lanta et al., 2009). On the other hand, dandelion plants can also be strongly supported by high rates of fertilization, as shown by the results of 80 years of application of NPK fertilizers in the Steinach Grassland Experiment (Hejcman et al., 2014). In contrast to meadows that are managed predominantly by mowing, pastures are influenced by several additional factors, such as trampling, nutrient returns from dung and urine, and selective defoliation by animals (Ludvíková et al., 2014). Because Taraxacum species are often present in vegetation developed on dung and urine patches, they have been assigned a better N-indicator status than most pasture grasses (Ellenberg et al., 2001).

The competitive ability of dandelion in swards is positively correlated with increasing defoliation frequency, both in meadows (Gaisler et al., 2006; Pavlů et al., 2011) and in pastures (Pavlů et al., 2007; Schleip et al., 2013; Ludvíková et al., 2015). Increased defoliation results in increased light availability and thus better conditions for its greater abundance (Hejcman et al., 2010). On the other hand, in species-rich grassland, dandelion also occurs at sites without defoliation, where high contents of plant litter are recorded (Lanta et al., 2009). In pastures, grazing in conjunction with trampling are important factors for creating gaps, and this determines the abundance of seedlings and encourages seedling emergence dandelion (Martinková et al., 2009).

It might be expected that different grassland management treatments would affect Taraxacum differently over the long term, but most studies have been based on short-term experiments of <6 years duration (Harker et al., 2000; Lanta et al., 2009; Dumont et al., 2011; Novák et al., 2013). Therefore, the presence of a long-term manipulative grazing experiment on Agrostis capillaris grassland, which commenced in 1998, has provided an opportunity to analyse a continuous vegetation data set for a site where dandelion became one of the dominant grassland species (Pavlů et al., 2007). Preliminary results from this experiment revealed that any management imposed on abandoned grassland supported fast development of dandelion cover and density in the first six years (Pavlů et al., 2006, 2007). Furthermore, cutting and grazing in combination, regardless of intensity, were more favourable for the spreading of dandelion than grazing alone. However, to confirm this initial trend, we evaluated 15 years of manipulative grassland management in relation to the presence of dandelion.

With respect to the aforementioned facts, we addressed the following questions: (i) How do different grazing management regimes affect the cover and standing biomass of dandelion in the course of a long-term grazing experiment?; (ii) What is the relationship between plant cover and standing biomass of dandelion?; and (iii) Which grassland management is the most suitable for controlling the spread of dandelion?

Material and methods

Study site

The study site is located in the Jizerské hory Mountains, northern Czech Republic, in the village Oldřichov v Hájích situated 10 km north of Liberec (50°50'N, 15°06'E; 420 m above sea level). The mean annual precipitation is 803 mm, and the mean annual temperature is 7.2°C (Liberec Meteorological Station). The bedrock is biotic granite, and this is overlain with medium-depth Cambisol with a pH (KCl) of 5.45 and an organic-C content of 4.53%. The contents of plantavailable P, K, Ca and Mg using the Mehlich III method (Mehlich, 1984) were 28, 67, 1728 and 58 mg per kg of soil respectively.

The experimental site was drained, ploughed and reseeded with a highly productive grass-legume mixture in the early 1980s, and then managed intensively by cutting and grazing. In the early 1990s, mulching (mowing and chopping the plant biomass into 5-10 cm lengths, and deposited as a homogenous layer on the sward surface) was applied once a year (in August), and the grassland utilization was abandoned. When the experiment started in 1998, there had been no agricultural management during the previous 5 years. Prior to the introduction of experimental treatments in 1998, the grassland was classified as an upland hay mesophile meadow (alliance Arrhenatherion), but in later years, the alliance Cynosurion cristati (Chytrý, 2007) developed successively under long-term grazing management. The dominant species are Agrostis capillaris, Festuca rubra agg., Trifolium repens and Taraxacum spp. In May 2002, during fieldwork to provide an inventory of Taraxacum (Bohumil Trávníček, unpubl. obs.), the following species were recorded: (i) Section. Taraxacum: Taraxacum aberrans, T. alatum, T. ekmanii, T. fasciatum, T. horridifrons, T.lacinulatum, T. lundense, T. ochrochlorum, T. pallidipes, T. piceatum, T. sertatum, T. sinuatum and T. aequilopbum agg.; (ii) Section Hamata: T. hamatiforme and T. lamprophyllum. Because of difficulties in determination during the entire experiment, all presented Taraxacum species were thereafter referred to as Taraxacum officinale agg.

Experimental design and plot management

The long-term grazing experiment, referred to as the 'Oldřichov Grazing Experiment' (OGE), was established in the spring of 1998 and arranged in two randomized blocks (Pavlů et al., 2007). Each block consisted of five paddocks where the following treatments were applied: (i) extensive grazing (EG) in which the stocking rate was adjusted to achieve a mean target sward surface height of more than 10 cm; (ii) cutting in June followed by extensive grazing (ECG); (iii) intensive grazing (IG) in which the stocking rate was adjusted to achieve a mean target sward surface height of less than 5 cm; (iv) cutting in June followed by intensive grazing (ICG); and (v) unmanaged grassland (U). Each grazed paddock was circa 0.35 ha, and the U paddock was 0.12 ha. All grazed paddocks were continuously stocked by young heifers (initial live weights of 150-250 kg) in each grazing season from early May until late October. The mean productivity of the pasture has been found to be in the range 2–4 t DM ha^{-1} year⁻¹ (Pavlů *et al.*, 2007). The sward surface heights were measured weekly across each experimental plot (100 measurements) using a rising plate meter (Correll et al., 2003), and stocking density was adjusted accordingly by increasing or decreasing the area available for grazing. The herbage biomass harvest in the ECG and ICG treatments was performed using a tractor with three machines: one for cutting at 3-5 cm, a haymaker and a pickup hay-loader. The cut was taken at the beginning of June, which is the traditional time for hay making in this upland grassland area, and after anthesis of Taraxacum.

Data collection of cover and standing biomass of Taraxacum

Permanent 1 m × 1 m plots were analysed using a continuous grid of nine $0.33 \text{ m} \times 0.33 \text{ m}$ subplots in four replications per paddock. Percentage cover of all vascular plant species in each subplot was estimated visually just before the start of the grazing season in early May of each year from 1998 to 2012. The mean of nine subplots was used for statistical evaluation.

To determine the standing biomass of Taraxacum, in early May each year of 2001-2012, six samples were collected from randomly positioned 0.50 m × 0.25 m quadrats after cutting with electric shears at ground level in each paddock. Samples were frozen at -20° C and later sorted into Taraxacum, graminoids, forbs other than Taraxacum, mosses and legumes, and then subsequently dried for 48 h at 70°C and weighed. Standing dry-matter (DM) biomass data were recalculated (as g DM m⁻²). The results in this paper are based on analysis of the standing biomass data of Taraxacum only. A standing biomass/cover ratio was calculated to provide an evaluation of fitness of Taraxacum plants in the existing sward.

Data analysis

Repeated measures analysis of variance (ANOVA) was used to evaluate the annual variation of cover of Taraxacum. One-way ANOVA was then used to test differences among treatments for cover of Taraxacum in a particular year and standing DM biomass (g m⁻²)/ cover ratio of Taraxacum. Further post hoc comparison using the Tukey's HSD test was applied to identify significant differences between individual treatments. Linear regression was used to analyse the relationships between: (i) percentage cover of Taraxacum and percentage cover of other vascular plant species, (ii) percentage cover and standing biomass of Taraxacum, and (iii) percentage cover of Taraxacum and mean sward height recorded during sampling. Statistica 10.0 software was used to perform all univariate statistical procedures (StatSoft, 2010). The means of four permanent plots for cover and means of six samples for standing biomass per paddock were used for regression analyses. Cover and standing biomass/cover ratio of Taraxacum was log transformed to meet the assumption of ANOVA.

Results

There was a significant effect of treatment (P < 0.001), year (P < 0.001), and an interaction of treatment and year (P < 0.001) on the cover of Taraxacum for the years 1998–2012. At the beginning of the experiment in May 1998 (before the different management treatments were imposed on the previously unmanaged grassland), there were no significant differences in the cover of Taraxacum among treatments and cover varied from 1.0 to 4.1% (Figure 1). Immediately following the onset of the different management treatments, it was evident that all types of defoliation treatments (ICG, IG, ECG, EG) supported an increase in the cover of Taraxacum. The lowest amount of cover was recorded in the unmanaged treatment (U) over the duration of the experiment, and since 2000, it has not exceeded 0.1%. Up to 2006, Taraxacum was especially promoted by the combination of cutting and subsequent grazing (ICG and ECG); however, the differences among all managed treatments were small. In 2007, there was a pronounced decrease of Taraxacum in all of the defoliation treatments, with no significant differences among treatments. The greatest decrease in the cover of Taraxacum was recorded in the ECG treatment (from 29 to 13%), followed by IG (from 24 to

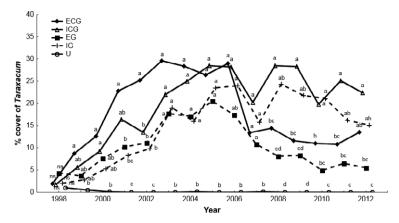
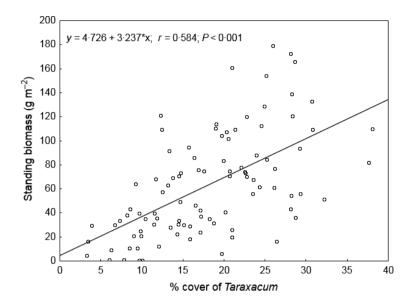


Figure 1 Changes in seasonal cover of *Taraxacum* under different treatments for the years 1998–2012. P represents probability value obtained by one-way ANOVA for each year, and P < 0.01 was for analyses in years from 1999 to 2012. n.s. – non-significant result in year 1998. Significant differences (P < 0.05) according to the Tukey's post hoc test are indicated by different letters. Treatment abbreviations are as follows: intensive grazing (IG), first cut followed by intensive grazing (ICG), extensive grazing (EG), first cut followed by extensive grazing (ECG) and unmanaged grassland (U).


16%), ICG (from 28 to 20%) and EG (from 17 to 11%). After 2007, the management intensity became a significant factor for Taraxacum cover in the years 2008–2012. This increase in Taraxacum cover according to grazing intensity was strengthened by the combination of cutting and grazing (ICG > IG > ECG > EG).

There was a significant (P < 0.001) positive linear relationship between cover of Taraxacum and cover of A. capillaris (r = 0.312), Poa trivialis (r = 0.354) and T. repens (0.452). On the other hand, there was a significant (P < 0.001) negative linear relationship between cover of Taraxacum and cover of Aegopodium podagraria (r = 0.359), Alopecurus pratensis (r = 0.380), Galium album (r = 0.392) and Holcus mollis (r = 0.362). Correlation coefficients of relationships between cover of Taraxacum and cover of other vascular plant species were lower than 0.3 or they were non-significant. A significant positive linear relationship between percentage cover and standing DM biomass of Taraxacum was found (Figure 2). The lowest standing biomass/ cover ratio was recorded in the EG treatment, but this ratio was very similar for the other managed treatments (IG, ICG, ECG) with no significant differences among treatments (Figure 3). There was a significant negative linear relationship between percentage cover of Taraxacum and the mean actual sward height (Figure 4).

Discussion

The main message from the results obtained from this experiment is that the imposition of different longterm grassland management regimes on previously

abandoned grassland resulted in significant divergence in the proportions of Taraxacum in the sward. We were able to distinguish two main periods, however. In the first 10 years of the study, any management regime, regardless of its intensity, was the key driver for the rapid development of Taraxacum presence relative to the unmanaged treatment, whereas in the last 5 years of the study, the grazing intensity was the key factor that affected the presence and amount of Taraxacum. The lowest proportion of Taraxacum was found in the abandoned treatment, and this occurred over the entire duration of the experiment. There was a tendency for the co-occurrence of Taraxacum with short growing species (A. capillaris and T. repens) and the taller grass *P. trivialis*. It seems that these species do not compete with each other and they share the same niche presented by intensive defoliation and disturbance by trampling. Generally, higher defoliation intensity under intensive grazing is more favourable for dandelion presence (Bakker et al., 1983), especially in short sward-height patches (Ludvíková et al., 2015). This is because the sparse canopy and light penetration into the base of the sward increase the possibility for seed germination and for plants to enter into the generative phase successfully (Mølgaard, 1977; Pykälä, 2005). Higher grazing intensity is also related to increasing grassland disturbance (Liu et al., 2013), which supports the higher presence of gap frequencies (Bullock et al., 1994) required for successful dandelion seed germination. On the other hand, intensive defoliation can increase tiller densities of grasses (Brock et al., 1996) and thus reduce the introduction of Taraxacum because of the competitive ability of the existing

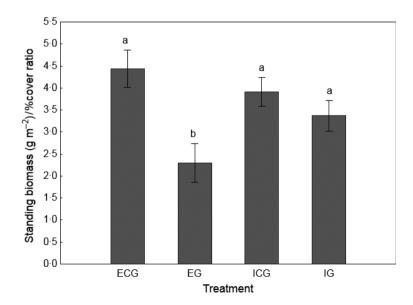


Figure 2 Relationship between percentage cover and standing DM biomass of *Taraxacum* over the years 2001–2012.

sward (Hoffmann *et al.*, 1997; Hofmann and Isselstein, 2004). However, these above-mentioned studies were based on species-poor grasslands that were dominated by *Lolium perenne*, with several times higher tiller density than in the *A. capillaris* grassland in our experiment (Pavlů *et al.*, 2006). Therefore even under intensive grazing in *A. capillaris* grassland, the tiller density of grasses in May was only about 3000–7000 tillers m⁻² in May (Pavlů *et al.*, 2006). This tiller density was unlikely to have had an adverse effect in terms of restricting the introduction of forbs into the sward. Moreover, besides differences in the dominant grass species, the later start of the vegetation season

can also contribute to a less dense sward, and at the site of our experiment the start of grazing season is usually in late April/early May because of the long duration with snow cover (Liberec Meteorological Station). In addition, sward disturbance by machinery during hay harvesting is very important for the successful spread of *Taraxacum* into grasslands.

Conditions that are favourable for the spread of *Taraxacum* include the combination of seed production and dispersal with the presence of open gaps caused by trampling or dung/urine patches or by disturbance due to cutting (heavy biomass crop, sward damage). Similar findings to our results were reported by Tarmi

Figure 3 Standing DM biomass/cover ratio under different treatments over the years 2001-2012. Significant differences (P < 0.05) according to the Tukey post hoc test are indicated by different letters. Treatment abbreviations (IG, ICG, EG, EGG) are explained in Figure 1.

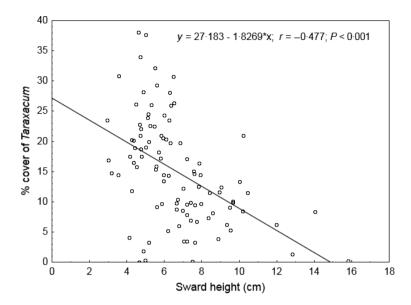


Figure 4 Relationship between percentage cover of Taraxacum and actual sward height during data collection over the years 1998-2012.

and Hyvönen (2012), who found that Taraxacum was abundant at sites where frequent cutting was applied. This suggests that cutting management in late May or early June, under the weather conditions of central Europe, can allow sufficient time for dandelion to flower and produce seeds. Therefore, the greater abundance of Taraxacum in treatments that are both cut and grazed, compared to treatments that are grazed only, can be ascribed to greater seed production (Abu-Dieyeh and Watson, 2007; Pavlů et al., 2007). For this reason, early cutting before setting of ripe seeds seems an appropriate method of grassland management that will limit seed dispersal and the opportunities for subsequent germination of Taraxacum (Martinková et al., 2009, 2011). Similarly, early cutting before the main period for seed production of Taraxacum was recommended by Neuteboom and Lantiga (1991) as a method for reducing dandelion without chemical control.

An unexpected finding was the marked decrease of cover of Taraxacum that was observed in all of the management regimes applied in 2007, the mid-period of the experiment. This decrease cannot be directly linked to unusual weather conditions, because there were no substantial changes in precipitation and temperature (Czech Hydrological Institute; www.chmi.cz), and no significant fluctuations in herbage biomass production under the OGE experiment were recorded during this period (Š. Supek, unpublished data).

Competition for light in the existing sward is one reason why Taraxacum plants were less abundant in the swards of extensively managed treatments than in intensively managed ones. The presence of lower proportions of dandelion under extensive grazing has also been described in a similar pasture experiment in Reliehausen (Germany). In that study, lenient grazing management resulted in a higher proportion of grass stems in the swards, and dandelion was less competitive due to its prostrate life form (Isselstein et al., 2007). However, our experiment is the first study to reveal that extensive grazing leads not only to a reduction in the percentage cover of Taraxacum plants, but also in a reduced standing biomass/cover ratio. It means that, due to the effects of light competition in the existing sward, Taraxacum plants had lower fitness in extensively managed grassland than in intensively managed grassland.

Further, the results presented in this paper show clear evidence for the existence of linear relationships between cover and aboveground standing DM biomass of Taraxacum under experimental conditions of longterm pasture management. Although the existence of linear relationships between biomass and cover has been reported previously for temperate grassland vegetation (Röttgermann et al., 2000; Axmanová et al., 2012), this was not tested solely for dandelion plants. Therefore, measurement of the percentage cover of Taraxacum could be used as a simple method to indicate the standing DM biomass of Taraxacum in the sward.

Conclusion

On A. capillaris grassland, management with intensive grazing led to the greatest increase in abundance of Taraxacum. This effect was further strengthened if there was also previous cutting during the late-flowering phase. Conversely, cover of Taraxacum was negatively affected by increasing sward height where Taraxacum plants had lower fitness. Extensification management in A. cavillaris grassland could therefore be used as a simple method for the control of Taraxacum abundance and reduce its seed production and dispersal to adjacent arable land in the vicinity of infested grasslands. Abandonment of grassland management would be expected to result in the strongest elimination of dandelion. This study emphasizes the importance of the decision-making process for grazing management in semi-natural grassland and its consequences for the control and development of Taraxacum species.

Acknowledgments

This work was supported by projects of MACR (RO0415) and IGA (20144223). We are grateful to František Paška, Irena Jonášová, Věra Ismanická and Vlastislav Černý for their help with fieldwork. Useful comments from two anonymous reviewers are gratefully acknowledged.

References

- ABU-DIEYEH M.H. and WATSON A.K. (2007) Grass overseeding and a fungus combine to control Taraxacum officinale. Journal of Applied Ecology, 44, 115-124.
- Assaf T. and Isselstein J. (2009) Evaluation of dandelion as a potential forage species in mixed-species swards. Crop Science, 49, 714-721.
- Axmanová I., Tichý L., Fajmonová Z., Hájková P., HETTENBERGEROVÁ E., LI C.F., MERUNKOVÁ K., Nejezchlebová M., Otýpková Z., Vymazalová M. and Zelený D. (2012) Estimation of herbaceous biomass from species composition and cover. Applied Vegetation Science, 15, 580-589.
- BAKKER J.P., DE LEEUW J. and VAN WIEREN S.E. (1983) Micro-patterns in grassland vegetation created and sustained by sheep grazing. Vegetatio, 55, 153-161.
- BROCK J.L., HUME D.E. and FLETCHER R.H. (1996) Seasonal variation in the morphology of perennial ryegrass (Lolium perenne) and cocksfoot (Dactylis glomerata) plants and populations in pasture under intensive sheep grazing. Journal of Agricultural Science, *Cambridge*, **126**, 37–51.
- BULLOCK J.M., CLEAR HILL B., DALE M.P. and SILVERTOWN J. (1994) An experimental study of the effects of sheep grazing on vegetation change in a species-poor grassland and the role of seedling recruitment into gaps. Journal of Applied Ecology, 31,
- Chytrý M. (ed) (2007) Vegetace České republiky 1. Travinná a keříčková vegetace (Vegetation of the Czech Republic 1. Grassland and heathland vegetation). Prague, Czech Republic: Academia.
- CORRELL O., ISSELSTEIN J. and PAVLŮ V. (2003) Studying spatial and temporal dynamics of sward

- structure at low stocking densities: the use of an extended rising-plate-meter method. Grass and Forage Science, 58, 450-454.
- DUMONT B., CARRÈRE P., GINANE G., FARRUGGIA A., LANORE L., TARDIF A., DECUQA F., DARSONVILLE O. and LOUAULT F. (2011) Plant-herbivore interactions affect the initial direction of community changes in an ecosystem manipulation experiment. Basic and Applied Ecology, 12, 187-194.
- Ellenberg H., Weber H.E., Düll R., Wirth V. and WERNER W. (2001) Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in central Europe, 3rd edn). Scripta Geobotanica, 18, 1-258.
- GAISLER J., PAVLŮ V. and HEJCMAN M. (2006) Effect of mulching and cutting on weedy species in an upland meadow. Journal of Plant Diseases and Protection, 20, 831-
- GRIME J.P., HODGSON J.G. and HUNT R. (1988) Comparative plant ecology. London, UK: Unwin Hyman.
- GRZEGORCZYK S., ALBERSKI J. and OLSZEWSKA M. (2013) Accumulation of potassium, calcium and magnesium by selected species of grassland legumes and herbs. Journal of Elementology, 18, 69-78.
- HARKER K.N., BARON V.S., CHANASYK D.S., NAETH M.A. and Stevenson F.C. (2000) Grazing intensity effects on weed populations in annual and perennial pasture systems. Weed Science, 48, 231-238.
- HARRINGTON K.C., THATCHER A. and KEMP P.D. (2006) Mineral composition and nutritive value of some common pasture weeds. New Zealand Plant Protection, **59**, 261–265.
- HEJCMAN M., SCHELLBERG J. and PAVLŮ V. (2010) Long-term effects of cutting frequency and liming on soil chemical properties, biomass production, and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertiliser application. Applied Vegetation Science, 13, 257-269.
- HEJCMAN M., SOCHOROVÁ L., PAVLŮ V., ŠTROBACH J., DIEPOLDER M. and SCHELLBERG J. (2014) The Steinach Grassland Experiment: soil chemical properties, sward height, and plant species composition in three cut alluvial meadows after decades-long fertiliser application. Agriculture, Ecosystems and Environment, 184, 76-87.
- HOFMANN M. and ISSELSTEIN J. (2004) Seedling recruitment on agriculturally improved mesic grassland: the influence of disturbance and management schemes. Applied Vegetation Science, 7, 193-200.
- HOFMANN M. ISSELSTEIN J. and OPITZ V. (1997) Entwicklung eingesäter Kräuter in Lolium perenne-Grasnarben und ihre Bedeutung für die Ertragsleistung der Bestände (Development of sown herbs in Lolium perenne swards and their importance for the yield persistence). Pflanzenbauwissenschaften, 1, 35-41.
- HOVELAND C.S., BUCHANAN G.A., BOSWORTH S.C. and BAILEY I.J. (1986) Forage nutritive quality of weeds in Alabama. Auburn, AL: Auburn University.
- ISSELSTEIN J. and RIDDER P. (1993) Untersuchungen zum Trocknungsverlauf ausgewählter Grünlandkräuter unter kontrollierten Bedingungen (Investigations on the

- drying process of selected grassland herbs under controlled conditions). Das wirtschaftseigene Futter, 39, 136-145.
- ISSELSTEIN J., GRIFFITH B.A., PRADE P. and VENERUS S. (2007) Effects of livestock breed and grazing intensity on biodiversity and production in grazing systems. 1. Nutritive value of herbage and livestock performance. Grass and Forage Science, 62, 154-158.
- KHAN R., KHAN M.A., SULTAN S., MARWAT K.B., KHAN I., HASSAN G. and SHAH H.U. (2013) Nutritional quality of sixteen terrestrial weeds for the formulation of cost-effective animal feed. The Journal of Animal and Plant Sciences, 23(1 Suppl.), 75-79.
- KIRSCHNER J. and ŠTĚPÁNEK J. (2011) Typification of Leontodon taraxacum L. (≡ Taraxacum officinale F.H. Wigg.) and the generic name Taraxacum: a review and a new typification proposal. Taxon, 60, 216-220.
- Klimeš F., Kolář L., Kobes M. and Voženílková B. (2003) The impacts of various cultivation methods and permanent grassland use on the changes in Taraxacum officinale Web. cover rate. Plant, Soil and Environment, 49, 49-54.
- LANTA V., DOLEŽAL J., LANTOVÁ P., KELÍŠEK J. and MUDRÁK O. (2009) Effects of pasture management and fertilizer regimes on botanical changes in species-rich mountain calcareous grassland in central Europe. Grass and Forage Science, 64, 443-453.
- LIU Y.Y., GONG Y.M., WANG X. and HU Y.K. (2013) Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees. Journal of Arid Land, 5,
- Ludvíková V., Pavlů V., Gaisler J., Hejcman M. and PAVLŮ L. (2014) Long term defoliation by cattle grazing with and without trampling differently affects soil penetration resistance and plant species composition in Agrostis capillaris grassland. Agriculture, Ecosystems and Environment, 197, 204-211.
- Ludvíková V., Pavlů V., Pavlů L., Gaisler J. and HEJCMAN M. (2015) Sward-height patches under intensive and extensive grazing density in Agrostis capillaris grassland. Folia Geobotanica, 50, 219-228.
- MARTEN G.C., SHEAFFER C.C. and WYSE D.L. (1987) Forage nutritive value and palatability of perennial weeds. Agronomy Journal, 79, 980-986.
- MARTINKOVÁ Z., HONĚK A. and PEKÁR S. (2009) Seed availability and gap size influence seedling emergence of dandelion (Taraxacum officinale) in grasslands. Grass and Forage Science, 64, 160-168.
- Martinková Z., Honěk A. and Lukáš J. (2011) Viability of Taraxacum officinale seeds after anthesis. Weed Research, 51, 508-515.
- Mehlich A. (1984) Mehlich No. 3 soil test extractant: a modification of Mehlich No. 2. Communication in Soil Science and Plant Analysis, 15, 1409-1416.
- Mølgaard P. (1977) Competitive effect of grass on establishment and performance of Taraxacum officinale. Oikos, 29, 376-382.

- MOLINA-MONTENEGRO M.A., PALMA-ROJAS C., ALCAYAGA-OLIVARES Y., OSES R., CORCUERA L.J., CAVIERES L.A. and GIANOLI E. (2013) Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography, 36, 718-730.
- NEUTEBOOM J.H. and LANTIGA E.A. (1991) Population dynamics of Taraxacum officinale in grassland. In: Grassland renovation and weed control in Europe; Proceedings of a conference of the European Grassland Federation, Graz, Austria, September 18-21, 1991, pp. 163-164
- Novák J., Pavlů V. and Ludvíková V. (2013) Reintroduction of grazing management after deforestation of formerly abandoned grassland and its effect on early vegetation changes in the Western Carpathians (Slovakia). Grass and Forage Science, 68, 448-458
- PAVLŮ V., GAISLER J., HEJCMAN M. and PAVLŮ L. (2006) Effect of different grazing systems on dynamics of grassland weedy species. Journal of Plant Diseases and Protection, 20, 377-383.
- PAVLŮ V., HEJCMAN M., PAVLŮ L. and GAISLER J. (2007) Restoration of grazing management and its effect on vegetation in an upland grassland. Applied Vegetation Science, 10, 375-382.
- PAVLŮ V., SCHELLBERG J. and HEJCMAN M. (2011) Cutting frequency vs. N application: effect of a 20-year management in Lolio-Cynosuretum grassland. Grass and Forage Science, 66, 501-515.
- PYKÄLÄ J. (2005) Plant species responses to cattle grazing in mesic semi-natural grassland. Agriculture, Ecosystems and Environment, 108, 109-117.
- RÖTTGERMANN M., STEINLEIN T., BEYSCHLAG W. and DIETZ H. (2000) Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation. Journal of Vegetation Science, 11, 145-148.
- SCHLEIP I., LATTANZI F.A. and SCHNYDER H. (2013) Common leaf lifespans of co-dominant species in a continuously grazed temperate pasture. Basic and Applied Ecology, 14, 54-63.
- STATSOFT. (2010) Statistica for Windows (volume X): General conventions and statistics X. Tulsa, USA: StatSoft Inc.
- STEWART-WADE S.M., NEUMANN S., COLLINS L. and BOLAND G.J. (2002) The biology of Canadian weeds. 117. Taraxacum officinale G.H. Weber ex Wiggers. Canadian Journal of Plant Science, 82, 825-853.
- TARMI S. and HYVÖNEN T. (2012) Plant species diversity and composition of plant communities in buffer zones with variable management regimes. Sustainable Agriculture Research, 1, 152-161.
- TILMAN E.A., TILMAN D., CRAWLEY M.J. and JOHNSTON A.E. (1999) Biological weed control via nutrient competition: potassium limitation of dandelions. Ecological Applications, 9, 103-111.